APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks.

نویسندگان

  • Natasha Iles
  • Stuart Rulten
  • Sherif F El-Khamisy
  • Keith W Caldecott
چکیده

Aprataxin and polynucleotide kinase (PNK) are DNA end processing factors that are recruited into the DNA single- and double-strand break repair machinery through phosphorylation-specific interactions with XRCC1 and XRCC4, respectively. These interactions are mediated through a divergent class of forkhead-associated (FHA) domain that binds to peptide sequences in XRCC1 and XRCC4 that are phosphorylated by casein kinase 2 (CK2). Here, we identify the product of the uncharacterized open reading frame C2orf13 as a novel member of this FHA domain family of proteins and we denote this protein APLF (aprataxin- and PNK-like factor). We show that APLF interacts with XRCC1 in vivo and in vitro in a manner that is stimulated by CK2. Yeast two-hybrid analyses suggest that APLF also interacts with the double-strand break repair proteins XRCC4 and XRCC5 (Ku86). We also show that endogenous and yellow fluorescent protein-tagged APLF accumulates at sites of H(2)O(2) or UVA laser-induced chromosomal DNA damage and that this is achieved through at least two mechanisms: one that requires the FHA domain-mediated interaction with XRCC1 and a second that is independent of XRCC1 but requires a novel type of zinc finger motif located at the C terminus of APLF. Finally, we demonstrate that APLF is phosphorylated in a DNA damage- and ATM-dependent manner and that the depletion of APLF from noncycling human SH-SY5Y neuroblastoma cells reduces rates of chromosomal DNA strand break repair following ionizing radiation. These data identify APLF as a novel component of the cellular response to DNA strand breaks in human cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APLF (C2orf13) is a novel component of poly(ADP-ribose) signaling in mammalian cells.

APLF is a novel protein of unknown function that accumulates at sites of chromosomal DNA strand breakage via forkhead-associated (FHA) domain-mediated interactions with XRCC1 and XRCC4. APLF can also accumulate at sites of chromosomal DNA strand breaks independently of the FHA domain via an unidentified mechanism that requires a highly conserved C-terminal tandem zinc finger domain. Here, we sh...

متن کامل

PARP-3 and APLF function together to accelerate nonhomologous end-joining.

PARP-3 is a member of the ADP-ribosyl transferase superfamily of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA DSB repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the retention of XRCC4/...

متن کامل

Number : MOLECULAR - CELL - D - 10 - 00462 R 3 Title : PARP - 3 and APLF Function Together to Accelerate Non - Homologous End Joining

PARP-3 is a member of the ADP-ribosyl transferase super-family of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA doublestrand break repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the ret...

متن کامل

APLF promotes the assembly and activity of non-homologous end joining protein complexes.

Non-homologous end joining (NHEJ) is critical for the maintenance of genetic integrity and DNA double-strand break (DSB) repair. NHEJ is regulated by a series of interactions between core components of the pathway, including Ku heterodimer, XLF/Cernunnos, and XRCC4/DNA Ligase 4 (Lig4). However, the mechanisms by which these proteins assemble into functional protein-DNA complexes are not fully u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 27 10  شماره 

صفحات  -

تاریخ انتشار 2007