APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks.
نویسندگان
چکیده
Aprataxin and polynucleotide kinase (PNK) are DNA end processing factors that are recruited into the DNA single- and double-strand break repair machinery through phosphorylation-specific interactions with XRCC1 and XRCC4, respectively. These interactions are mediated through a divergent class of forkhead-associated (FHA) domain that binds to peptide sequences in XRCC1 and XRCC4 that are phosphorylated by casein kinase 2 (CK2). Here, we identify the product of the uncharacterized open reading frame C2orf13 as a novel member of this FHA domain family of proteins and we denote this protein APLF (aprataxin- and PNK-like factor). We show that APLF interacts with XRCC1 in vivo and in vitro in a manner that is stimulated by CK2. Yeast two-hybrid analyses suggest that APLF also interacts with the double-strand break repair proteins XRCC4 and XRCC5 (Ku86). We also show that endogenous and yellow fluorescent protein-tagged APLF accumulates at sites of H(2)O(2) or UVA laser-induced chromosomal DNA damage and that this is achieved through at least two mechanisms: one that requires the FHA domain-mediated interaction with XRCC1 and a second that is independent of XRCC1 but requires a novel type of zinc finger motif located at the C terminus of APLF. Finally, we demonstrate that APLF is phosphorylated in a DNA damage- and ATM-dependent manner and that the depletion of APLF from noncycling human SH-SY5Y neuroblastoma cells reduces rates of chromosomal DNA strand break repair following ionizing radiation. These data identify APLF as a novel component of the cellular response to DNA strand breaks in human cells.
منابع مشابه
Chromosomal DNA Strand Breaks Involved in the Cellular Response to APLF (C2orf13) Is a Novel Human Protein
متن کامل
APLF (C2orf13) is a novel component of poly(ADP-ribose) signaling in mammalian cells.
APLF is a novel protein of unknown function that accumulates at sites of chromosomal DNA strand breakage via forkhead-associated (FHA) domain-mediated interactions with XRCC1 and XRCC4. APLF can also accumulate at sites of chromosomal DNA strand breaks independently of the FHA domain via an unidentified mechanism that requires a highly conserved C-terminal tandem zinc finger domain. Here, we sh...
متن کاملPARP-3 and APLF function together to accelerate nonhomologous end-joining.
PARP-3 is a member of the ADP-ribosyl transferase superfamily of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA DSB repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the retention of XRCC4/...
متن کاملNumber : MOLECULAR - CELL - D - 10 - 00462 R 3 Title : PARP - 3 and APLF Function Together to Accelerate Non - Homologous End Joining
PARP-3 is a member of the ADP-ribosyl transferase super-family of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA doublestrand break repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the ret...
متن کاملAPLF promotes the assembly and activity of non-homologous end joining protein complexes.
Non-homologous end joining (NHEJ) is critical for the maintenance of genetic integrity and DNA double-strand break (DSB) repair. NHEJ is regulated by a series of interactions between core components of the pathway, including Ku heterodimer, XLF/Cernunnos, and XRCC4/DNA Ligase 4 (Lig4). However, the mechanisms by which these proteins assemble into functional protein-DNA complexes are not fully u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 27 10 شماره
صفحات -
تاریخ انتشار 2007